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The resolution function of a slow neutron rotating crystal time-of-flight spectrometer applied to phonon 
measurements is treated analytically. It is demonstrated that every component of the instrument may 
contribute to the uncertainty of the time-of-flight measurement. Focusing conditions are derived leading 
to the concept of removable and irremovable time-of-flight spreads. No approximations are made con- 
cerning the phonon dispersion surface. Experimental evidence is presented to support the resolution 
functions calculated on the basis of this theory. 

l .  Introduction 

In the course of the past decade the scattering of ther- 
mal neutrons has proved to be one of the most versatile 
experimental techniques for studying dynamics and 
structure of solids and liquids. Fig. 1 shows a schematic 
sketch of a slow neutron spectrometer. The essential 
parts are the neutron source, the monochromator sys- 
tem, the sample, and the analyser system, elements of 
which are denoted by the indices 0, 1, 2, 3 according to 
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Fig. 1. Schematic sketch of a slow neutron spectrometer. 0: 
neutron source, 1: monochromator system, 2: sample, 3: 
analyser system. 

the order in which they are located along the neutron 
flight-path. Intermediate elements such as collimators 
C, flight-paths L, and neutron wave-vectors k have 
double indices. The experimental spectrum I(Q, co) ob- 
served by the analyzer is given by the convolution inte- 
gral 

I 
where R(Q, co) is the instrumental resolution function 
and a(Q, co) is the unknown scattering cross section. 
The variables Q, co are defined by the momentum trans- 
fer 

hQ = h ( k l 2 -  k23) (1"2) 

and by the energy transfer 

h 2 2 2 hco= ~ (k l : -k23) ,  (1.3) 

where m denotes the neutron mass. The problem is to 
evaluate a(Q, co) by an unfolding procedure, provided 
R(Q, co) is known. The most accurate method of deter- 
mining R(Q, co) would be a direct measurement re- 
quiring no prior knowledge of instrumental param- 
eters. This, however, is usually impossible except for 
zero energy transfer, so that in general R(Q, co) will 
have to be calculated. This was done analytically by 
Collins (1963), Peckham, Saunderson & Sharp (1967), 
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Cooper & Nathans (1967), Stedman (1968), and Nielsen 
& Bjerrum Moiler (1969) for a triple-axis spectrometer 
and Komura & Cooper (1970) for a twin-rotor time-of- 
flight spectrometer. 

The present paper contains an analytical treatment 
of the resolution function of a rotating crystal time-of- 
flight spectrometer applied to the measurement of pho- 
non dispersions co(q), where q is the phonon wave vec- 
tor. This goes considerably beyond Brockhouse (1961), 
Carvalho, Ehret & G1/iser (1967), and others, who re- 
stricted their investigations to some general instrumen- 
tal features. It is shown that every component of the 
spectrometer contributes to the uncertainty of the time- 
of-flight measurement. The corresponding time-of- 
flight spreads are calculated quantitatively. Further- 
more, with a view towards developing an optimum 
focusing procedure it is investigated which of the un- 
certainties can be reduced or even eliminated. Hence, 
uncertainties in the time-of-flight measurement will be 
separated into two groups which will be called the re- 
movable and the irremovable time-of-flight uncertain- 
ties. The assumption is made that the variation of the 
flight-paths L due to the vertical dimension of the mo- 
nochromator, of the sample, and of the detector is ig- 
nored. However, this approximation has only a neg- 
ligible influence on the instrumental resolution func- 
tion, because the flight-paths of a time-of-flight spec- 
trometer are very much longer than the vertical dimen- 
sions mentioned above. 

The dependence of the resolution function upon geo- 
metrical factors such as the shape of the monochroma- 
tor, of the sample, and of the detector is a characteristic 
of time-of-flight spectrometers. In order to take ac- 
count of these geometry effects it is useful to pursue the 
neutron flight-paths in real space and to describe the 
instrumental resolution as a function of the neutron 
flight-time T given by 

mL12 mL23 
T -  hk12 + ~ +AT.  (1.4) 

AT includes terms arising from geometrical factors as 
well as from the time delay of the incident neutrons. 
k23 follows from the phonon scattering surface which 
is defined as the locus of end-points of vectors Q and 
-k23 satisfying equations (1.2) and (1.3), provided ka2 
is fixed relative to the crystal lattice. This means that 
the flight-time T depends on the phonon scattering law 
a(Q, co). Therefore it is useful to introduce an effective 
resolution function for phonon scattering defined as 
the probability for detecting neutrons in the time inter- 
val dT when the spectrometer has been set to yield the 
phonon co(q) resulting from the scattering process: 

R~(T) = I I g12(k,2)R(ka2-k23, T)dk12dk23 • (1"5) 

R(kl2-k23, T) is equal to R(Q, T) and denotes the con- 
ventional resolution function defined by equation (1.1) 
in the time-of-flight scale, g~2(kt2) is the probability 
function for the incident neutrons. The integration over 

k23 is limited to the phonon scattering surface which is 
considered to have zero energy width. The index a 
points to the dependence on the scattering surface. 
Under the assumption that the change of the resolution 
function is negligibly small over the frequency range 
dco given by the finite width of the dispersion surface, 
while Q is kept constant, equation (1.1) then becomes 

I ( T ) =  f R~(T'-  T)a(T')dT',  (1.6) 

where o-(T) is the line shape of the phonon with wave- 
vector Q. In order to derive the unknown function a(T) 
from the measured time-of-flight spectrum, equation 
(1.6) suggests that it would be preferable to determine 
directly the effective resolution function for phonon 
scattering R,~(T) rather than to calculate first the in- 
strumental resolution function R(Q, T). 

The removable time-of-flight uncertainties are de- 
scribed in §2. Focusing conditions are given to reduce 
the time-of-flight spreads arising from the wave-num- 
ber distribution g12 of the incident neutrons and from 
the Doppler effect. There follow in §3 the irremovable 
contributions to R,~(T) resulting from the mosaic 
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Fig. 2. Wave-number distribution of neutrons scattered by 
the monochromator in a horizontal plane for several sets 
of instrumental parameters. The appropriate values of g12 
ale 0"75, 0.50 and 0.25 respectively, for the inner, middle 
and outer ellipses. 
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spreads ~2 and r/2 of the sample, of the collimations c~z3 
and/3z3, of the sample thickness, and of the detector 
thickness. To illustrate and support the preceding con- 
siderations §4 presents a series of experimental results. 
Some final conclusions are given in § 5. 

2. Removable time-of-flight uncertainties 

2.1 Monochromator ellipsoid 
Whenever the condition of Bragg's law 

n2 = 2d sin 01 (n = 1, 2, 3, . . . )  (2.1) 

is fulfilled by the reflecting planes of the rotating mono- 
chromator whose interplanar distance is given by d, 
neutrons of wavelength 2 (wavelengths of order higher 
than n = 1 can often be suppressed by filters) are scat- 
tered into the direction determined by the angle 201. 
Assuming Gaussian transmission functions of Soller 
collimators and Gaussian mosaic spreads of single 
crystals, the wave-number distribution of the emitted 
neutrons is given by 

, 11/-  g12(k12,712, J12, t) = go(k'12)pl(k;2 ) -2a ln2 

/ 
/ / 

/ / 

/ 
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Fig. 3. Schematic representation of the neutron scattering 
process by phonons in reciprocal space. The dotted line 
symbolizes the monochromator  ellipsoid whose principal 
axis and focusing surface are denoted by p and frespectively. 
The phonon scattering surface is given by S. 

with 

x exp c~1 712- 2 - - ~ ]  tg 01 

41n2 [712- ( 1 -  -k;2~ tg 01-2zc (v t -  u ]  2 

41n2 41n2 41n2 ] 
fl01 + 4rh sin 201 

(2.2a) 

] / f l ~  1 (2.2b) 
a =  + 4r/~ sin 201 ' 

which is derived in Appendix A. 722 and 012 are the 
horizontal and vertical divergence angles with respect 
to the optimum emission direction, ~ and fl the hori- 
zontal and vertical half-widths of the transmission func- 
tion of the collimators, ~ and i / the half-widths of the 
mosaic spread in the horizontal and vertical plane re- 
spectively, go is the wave-number distribution of the 
neutrons emitted from the source, pl the monochroma- 

z~ 
tor reflectivity, k12 the mean w a v e - n u m b e r - - - - d e -  

d sin 01 

rived from equation (2.1), v the spin velocity of the ro- 
tating crystal, w the number of reflecting planes of the 
monochromator, and u an integer index denoting the 
number of neutron bursts already emitted at the time t. 
The form of g12 is nearly ellipsoidal and will be called 
the monochromator ellipsoid. It is illustrated in Fig. 2 
for several sets of instrumental parameters given in 
Table 1. Since in a first approximation the wave-num- 
ber and the direction of the neutron beam are corre- 
lated only with respect to its horizontal divergence, 
Fig. 2 shows cross sections through the monochroma- 
tot ellipsoid in a horizontal plane. Focusing effects be- 
come possible due to the asymmetric shape of the wave- 
number distribution relative to the mean emission di- 
rection. 

Table 1. Instrumental parameters used to calculate 
the monochromator ellipsoid shown in Fig. 2 

~01 ~l 612 0X K12[A-~ l t[pse~ v[sec-q 
A 30' 15' 30' 35 ° 1.92 0 200 
B 30 30 30 35 1.92 0 200 
C 15 15 30 35 1.92 0 200 
D 30 15 15 35 1.92 0 200 
E 30 5 30 35 1.92 0 200 
F 30 15 30 50 1.44 0 200 
G 30 15 30 35 1"92 1 200 
H 30 15 30 3 5  1"92 2 200 

Fig. 3 gives a schematic sketch of the scattering pro- 
cess in reciprocal space for two pairs of neutron wave- 
vectors belonging respectively to the centre and to any 
point of the monochromator ellipsoid. The direction 
of the scattered neutrons is kept constant; its variation 
within the angular limits determined by the collimator 
Cz3 contributes to the irremovable time-of-flight un- 

A C27A-5 
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certainty as will be discussed in the following section. 
The resulting phonon frequencies co, ~ '  and wave-vec- 
tors q,q' as well as the wave vectors k2a,k~3 of the 
scattered neutrons follow from the scattering surface. 
In general the flight-times T and T' of the neutrons for 
the two scattering processes differ from each other. 
The locus of end-points of wave vector pairs k~2,k~a 
giving identical flight-times is a surface which will be 
called the focusing surface of the monochromator el- 
lipsoid. From the equality T=  T' one obtains the ap- 

t propriate wave-numbers k23 as 

kz3 =L23 [[-L12-klz + LZak23 k~zL12 mh AT,] -l (2.3) 

AT' is the shift of the mean emission time of neutrons 
with wave-vector k]2 relative to those with wave-vector 
k12. It is independent of the vertical divergence angle 
fit2 and can be calculated from equation (2.2) by search- 
ing the maximum ofgl2 for fixed values of k]2 and 712: 

( k',2 
1 -  -k-~12 ] tg01-Tx 2 

AT'= 2rcv " (2"4) 

Wave-vector pairs lying outside the focusing surface 
give rise to a time-of-flight difference which is given by 

fliT_ mL23 ( 1  1 ) (2.5) 
h ~3 ~3 ' 

where k~a results from the scattering surface and/~23 is 
defined by equation (2.3). The 50 % probability spread 
is obtained by considering incoming neutron wave-vec- 
tors k'12 with g12=0"5. 

It can be seen intuitively from Fig. 3 that the mean 
value of fil T will be a minimum when the focusing sur- 
face coincides with a vertical plane containing the prin- 
cipal axis of the monochromator ellipsoid. In order to 
achieve this the following experimental parameters can 
be varied: the wave-vector k12 and the Bragg angle 01 
of the incoming neutron beam, the reciprocal-lattice 
vector 2zcx determining the momentum transfer hQ = 
h(2zcx + q), the orientation of k12 and q with respect to 
2~zx, and the length of the neutron flight-path L23; 
moreover, in many cases one can carry out the scatter- 
ing process either with energy loss or with energy gain 
of the neutrons, thus duplicating the range of variation. 
The parameters ~01,/~01, ~b rh, ~12, fl12 have only little 
influence on the orientation of the focusing surface. 
By reducing these parameters the monochromator el- 
lipse will become smaller as shown in Fig. 2, thus re- 
ducing the time-of-flight spread 61T. A variation of the 
spin velocity v of the rotating crystal and of the flight- 
path L12 is not at all commendable, because these are 
the appropriate parameters to eliminate the time-of- 
flight uncertainty from the Doppler effect, as demon- 
strated in the following subsection. However, to realize 
efficient focusing effects, the sense of monochromator 

rotation has to be chosen so that the reflecting planes 
reach the Bragg position with decreasing angle. Thus 
the slower neutrons get a start advantage relative to the 
faster ones as can be seen from equation (2.4). 

2.2. Doppler effect 
In contrast with the Bragg reflexion from the sta- 

tionary monochromator, the neutrons scattered elastic- 
ally from the rotating monochromator receive a sup- 
plementary momentum 2my, where v is the velocity 
component of a small element of the monochromator 
perpendicular to the reflecting planes. Therefore 
Bragg's law (2.1) has to be modified in such a way that 
k01 and kx2 are no longer equal in length, whereas the 
momentum transfer and the angle of deflection as usual 
have the values 2rchz and 201 respectively. The appro- 
priate reciprocal space diagram is shown in Fig. 4, 
which illustrates both the deviation of kfz from the 
mean wave-number k'~2 associated with the stationary 
reflexion and the shift A T B of the mean emission time 
of the neutron burst owing to the deflection ofkonl rela- 
tive to kgl by the angle e. These effects were investigated 
in detail by Meister (1967). He showed that the above 
mentioned differences in wave-number and emission 
time depend linearly on the coordinate y indicated in 
Fig. 5. In a first approximation the calculation yields 

B a _ 2rcvmy sin 01 (2"6) 
k12-k12- h - '  

A T S =  my cos 01 
hk~: (2.7) 

2mv/h 
" L 

A / j / 

Fig. 4. Schematic sketch of the Doppler effect in reciprocal 
space. The two pairs of wave vectors k0r 4, k12 A and k%1, 
k12 B are associated with elastic scattering from the mono- 
chromator crystal at rest and in rotation respectively. The 
circle L is the locus of end-points of the incoming and scat- 
tered neutron wave vectors including the scattering angle 201. 
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The idea of optimum focusing then consists in trying 
to equalize the neutron flight-times TA and TB for dif- 
ferent reflecting planes A and B of the monochromator 
as shown in Fig. 5: 

( ' )  
mL12 mL23 m LI2 nt- 

TA-- hk~2 + hk~3.-  hk~2 

mL23 
+ ~ +AT B=T B. (2"8) 

kzB3 results from the scattering surface. It should be 
noted that equation (2.8) eliminates the time-of-flight 
uncertainty due to the finite width of the monochroma- 

I 

t 
! 

Y -. 

- y  

Fig. 5. Schematic sketch of the rotating monochromator. 
Reflecting planes are parallel to the y axis which is perpen- 
dicular to the bisector of the angle between the incoming 
and scattered neutrons. Planes perpendicular to y (e.g. the 
planes A and B) scatter neutrons with equal velocities. 

tor crystal. Combining equations (2.6), (2.7), and (2.8) 
yields the focusing condition 

hk,*2 
2~zm sin 01(L12 cos 01 +y)  

x 1 +cos  2 01 __L23k12(k23-k23) cos 0 z 
y(k~3)2 (2.9) 

provided that Ikf2- k~21 '~ k~2 and Ik2B~- kg31 ~ k~3. If the 
curvature of the dispersion surface is small around the 
point (Q, co), equation (2.9) will be independent o fy  in 
a first approximation. 

There remains a certain time-of-flight spread 62T, 
when the dispersion surface has any appreciable curva- 
ture or when the condition (2"9) cannot be fulfilled on 
account of instrumental restrictions. The resulting 
time-of-flight spread fi2T is then given by equation (2.5), 
where k~3 follows from the phonon scattering surface 
and 7%3 is equal to k2~3 derived from equation (2.8). To 
obtain the 50% probability spread y has to take the 
values r1/3/2 and r1/2/2 for monochromator crystals of 
cylindrical and spherical shape respectively, where r 
denotes the crystal radius. 

3. Irremovable time-of-flight uncertainties 

3.1. Mosaic spread of the sample 
The finite mosaic spreads ~2 and r/z of the sample 

smear out the wave-vector q of the observed phonon 
as shown in Fig. 6(a) for the horizontal component. 
The contribution 63T to the time-of-flight spread is cal- 
culated using equation (2.5), where k~3 is derived from 
the phonon scattering surface and/~23 is equal to k23. 

3"2. Collimation between the sample and the detector 
A similar effect arises from the finite collimations c~23 

and fl23. This is shown in the reciprocal-lattice diagram 
of Fig. 6(b) for the horizontal plane. The corresponding 
time-of-flight spread c~4T is likewise derived from equa- 

(a) 

/  °23 

(b) 

Fig. 6. Schematic representation of the contributions to the irremovable time-of-flight uncertainty arising (a) from the finite 
mosaic spread ~z of the sample, (b) from the finite collimation 0~23. 

A C 2 7 A  - 5* 
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tion (2.5), where k2s results from the phonon scattering 
surface and/~23 equals k23. 

3.3. Sample thickness 
The sample is considered to be placed within a sector 

bounded by two planes perpendicular to the incoming 
and outgoing neutron beam as shown in Fig. 7. Within 
this sector curves of constant flight-times are given by 
a set of straight lines 

( ) sin~t 1 cos ~, +Y - c o n s t a n t ,  (3.1) 
X klz k23 k23 

where the y axis of the rectangular coordinate system 
is perpendicular to the incoming neutron beam. A 
simple integration procedure then furnishes the time- 
of-flight spread, provided the whole sample is uniformly 
irradiated by the neutrons. Using (3.1) one obtains 

(SsT = mWsgk~2- 2k12k2s cos gt + kZs. (3.2) 
hk12k23 

W s is a characteristic length depending on the shape of 
the saml:le. To obtain the 50 % probability spread W s 
has to be equal to D sin ~0 for a plate, r 1/3 for a cylinder, 
and rl/2 for a sphere, where r denotes the radius of the 
c2dinder and the sphere, and D the width of the plate, 
whose inclination angle relative to the set of straight 
lines (3.1) is given by ~. Consequently dsT vanishes for 
thin plates positioned in such a manner that tp =0.  

3.4. Detector thickness 
As in all time-of-flight experiments, the thickness of 

the counters introduces an uncertainty into the flight- 
path and thus gives rise to an irremovable time-of- 
flight spread whose half-width is given by 

mWd 
t ~ 6 T - -  ]~k2  3 (3"3) 

W~ is equal to the half-width of the response probability 
P(x) depending on shape and size of the detector, on 
the absorption properties and pressure of the filling 
gas, and on the wave-number k23. It follows from 
simple geometrical considerations that for a cylindrical 
detector the response probability is given by 

P(x)=C l e x p  { - p ( x - r ) }  
F 

/ x ( 2 r - x )  

x exp {- /1  r21/~-y2}dy, (3.4) 
*/0 

using an exponential absorption law. In this formula C 
denotes the normalization constant, r the radius of the 
detector, and/~ the linear absorption coefficient. A gen- 
eral discussion of P(x) is not possible because the inte- 
gral cannot be solved analytically. However, the first 
terms of equation (3.4) suggest a minimal half-width 
Wa for small radii r and large absorption coefficients/x. 
This is verified in Fig. 8, presenting Wa as a function of 
radius, gas pressure, and neutron energy for a 3He de- 
tector. 

Experimental results 

The calculation of the effective resolution function for 
phonon scattering R~(T) requires a precise knowledge 
of the instrumental parameters a0~, fl01, a12, fl12, a23, flea, 
~l, rh, ~z, rh, y, His, Wa, the values of which should pre- 
ferably be determined experimentally except for those 
of the collimations c~ and fl which can be calculated 
exactly from the collimator dimensions. Such calibra- 
tion experiments are carried out by observing the co- 
herent elastic scattering from the sample at various 
speeds of rotation v, Bragg angles 02 and 02, neutron 
wave-numbers k12, and flight-paths L12 and /-,23. The 
set of resolution functions thus obtained for zero energy 
transfer may then be used to adapt the instrumental 
parameters with the aid of a variational procedure. 
This will be discussed in detail in Appendix B. 

The formulae described in the foregoing sections are 
now examined by means of experimental phonon peaks 
obtained with a lead single crystal (Furrer & H/ilg, 
1970). The sample was a cylinder 4 cm in diameter and 
6 cm in height. The mosaic spreads ~2 and/72 amounted 
to about 25'. 

4.1. Gaussian approximation 
Whenever the individual time-of-flight uncertainties 

d~ T derived in §§ 2 and 3 can be approximated by Gaus- 
sian functions, it is useful to describe R~(T) by its half- 
width 

Fr= (d~T): , (4.1) 
1 

y 

T T = const. 

1 
. . . . . . . . . . . . . .  ~_.. .. 

~ X  

Fig. 7. Schematic sketch explaining the irremovable time-of- 
flight spread due to the thickness of the sample P. The set 
of straight lines correspond to the curves of different flight- 
times being constant within the sector determined by the 
scattering angle ~,. 
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where the contributions J~T are derived by considering 
the 50 % probability spread. To test rigorously the cal- 
culated half-widths Fr, the comparison is made at 5 K, 
where the width F~(q) of the phonon line may be re- 
placed in a first approximation by a J function. Thus 
the observed peaks are nearly equal to the effective re- 
solution functions for phonon scattering. Fig. 9 shows 
a series of experimental time-of-flight spectra carried 
out for various degrees of focusing together with the 
corresponding wave-vector constellations in reciprocal 
space. The observed and calculated widths are given in 
Table 2. In general the over-all agreement between ob- 

Table 2. Observed and calculated widths of phonon 
peaks shown in Fig. 9 

A B C D E 
co[THz] 7"1 7"2 5"4 12"3 8"7 

J1T[/tsec] 46.8 35.6 57.8 54.6 36.0 
J2T[ttsec] 14.6 17-5 17.9 16-8 20.8 
63T[/tsec] 5.2 0.8 12.9 0.5 3.7 
JaT[/tsec] 9"4 5"8 10"0 7-8 7"8 
65T[psec] 48.6 49"6 31"4 21"6 22"7 
~6 TLusec] 11 "3 11.2 11.8 14-2 14.5 

FrLusec] 70"8 64"7 71"1 63"2 50"3 
Fe×p[/tsec] 75"4+6"7 70"4+7"2 68"4+6"7 62"7+6"1 52"4+3"9 
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' I i I ' 
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/ /  
/ 

iii ~"~'~" 
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/ / /  / i " "  - . - - - ' - "  - -  2 
/ /  ~ I - - - I 0  
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I ' I 
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Fig. 8. Half-widths Wa of the response probability P(x) as a 
function of gas pressure p, neutron energy E, and radius r 
for a 3He detector. 

served and calculated widths is seen to be satisfactory. 
However, in almost all cases, the observed widths turn 
out to be slightly larger than the predicted ones. These 
deviations are attributable to the presence of finite 
phonon life-times. 

4.2. Non-Gaussian case 
More precise results will be obtained by an exact cal- 

culation of the shape of the resolution function. This is 
indispensable whenever the individual contributions to 
R,(T) may no longer be approximated by Gaussian 
functions. It can be shown that R~(T) becomes asym- 
metric in shape when the dispersion surface possesses 
an appreciable curvature or exhibits anomalies around 
the point (Q, co), where the spectrometer has been set 
to realize the scattering process. 

The result of such a calculation is illustrated in Fig 
10 for a longitudinal phonon of wave-number 0.77 ~ 
propagating along the A direction at 290K. In case 
1 Ro(T) has been determined by using the Gaussian ap- 
proximation which results in a symmetrical function. 
In case 2, however, Ro(T) has been calculated on the 
basis of a sampling procedure, thus taking into ac- 
count the asymmetries mentioned above. To get the 
phonon profile a(T) the experimental spectrum I(T) 
was deconvoluted according to equation (1.6) with the 
aid of the computer program CSUP developed by 
Dotti (1967). As a result the phonon lines a(T) ob- 
tained in cases 1 and 2 reveal marked differences not 
only in the shape but also in the mean position and 
width. Thus it is proved that systematic errors in the 
observed phonon dispersion may arise from approx- 
imations generally used to evaluate the effective resolu- 
tion functions for phonon scattering. 

5. Summary 

The experimental spectra observed using a spectrom- 
eter are distorted by the finite instrumental resolu- 
tion. To obtain precise experimental data the resolution 
function has to be known exactly. Moreover focusing 
conditions should be such as to minimize the width of 
the observed peaks. These postulates have been treated 
analytically for a rotating crystal time-of-flight spectrom- 
eter applied to the measurement of phonon disper- 
sions by introducing the concept of removable and ir- 
removable time-of-flight spreads. To derive the un- 
known scattering cross section a(Q, co) it has been as- 
sumed that the resolution function does not change 
over a small frequency range do) given by the finite 
width of the dispersion surface, while Q is kept con- 
stant. This is valid only if the shape of the phonon line 
is symmetrical and if do)~o). No approximations are 
made concerning the phonon dispersion surface in con- 
trast to earlier investigations (Collins, 1963; Peckham 
et al., 1967; Cooper & Nathans, 1967; Stedman, 1968) 
where the dispersion surface is generally considered to 
be plane. Experiments carried out on lead (Furrer & 
HNg, 1970) on the  basis of the present theory yielded 
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an experimental error of 1-2% for the phonon fre- 
quencies and 20-30 % for the phonon widths at 290 K. 

The integrated intensity of a neutron group is calcu- 
lated from equations (1.6) as 

/t°t= I I(T)dT, (5.1) 

but this formula is only applicable to the limitations 
mentioned above. In addition the restriction d Q < Q  
must be satisfied because of the variation of the struc- 
ture factor. This means that the present theory is a good 
approach to determine resolution function shapes, but 
the calculation of intensities will only give reliable re- 
sults for small momentum and frequency spreads. 

It is worth while mentioning here that the procedure 
described in this paper may be applied to all kinds of 
excitation measurements as well. Moreover, it can 
easily by adapted either to a spectrometer at a pulsed 
neutron source or to a randomly pulsed experi- 
ment. 

The Fortran program TOFFOC (Furrer, 1971) eval- 
uating resolution functions and focusing conditions is 
available from the author on request. 

I wish to acknowledge the numerous and stimulating 
discussions with my colleagues Dr W. Bfihrer and Dr 
P. Fischer. In particular I am grateful to Professor W. 
H~lg for his continuous support of this research. 

APPENDIX A 

Since the wave-number distribution go(~},, 6, k) of the 
in-pile neutrons is generally isotropic, the angular vari- 
ables 7 and 6 may be omitted. By defining the horizontal 
and vertical divergence angles with respect to the op- 
timum directions to be 70~, 7~, 7~2, and 60~, 6~, 6~,_ re- 
spectively, the wave-number distribution of the neu- 
trons emitted from the monochromator is given by 

g(k~2, 7oi, 71,7~2, 6ol, 61,612, t) = go(k'~2)pl(k'12) 
{ 4In2 41n2 [ 7 _ 2 n ( v t _  u ) ]  2 

x exp ~ l  72 t -  - ~ } -  w 

41n2 41n2 41n2 41n2 6~2~ 
- 

( a l )  

From the reflexion law it is easy to derive the equalities 

70t + 27~ = 7~2, (A2) 
60~ + 26a sin 0~ = 61z, (A3) 

where the divergence angles take the positive sign when 
the angle of Bragg reflexion is increased. A second con- 
dition for the horizontal divergence angles results from 
the derivative of equation (2.1): 

7o~ + 7~= 1 - -~lZ/ tg  0t • (A4) 

The final form of g~2 is then obtained by combining 
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Fig. 9. Observed p h o n o n  peaks f rom time-of-flight spectra for lead at 5 K, together with the corresponding experimental  constel- 
lations in a (110) plane. The dot ted lines denote Gaussian functions adapted to the experimental  profiles. The numbers  in 
brackets are the factors by which the intensity has been multiplied. The channel width has a value of 8/tsec, corresponding to 
mean frequency widths of 0.09 THz in cases A and B, 0.11 THz in case C, 0.27 THz in case D, and 0.31 THz in case E. 
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equations (A1), (A2), (A3), and (A4) and integrating 
the vertical terms over 60~ to eliminate )'01, )',, 60, and 61 
as shown in equation (2.2a). 

A P P E N D I X  B 

The instrumental resolution functions R(T) exper- 
imentally obtained for zero energy transfer are well ap- 
proximated by Gaussian functions. The corresponding 
half-widths are equal to 

The individual contributions are defined in the follow- 
ing paragraphs. 

6aT results from the wave-number distribution of the 
neutrons emitted by the sample. Paying attention to 
the equalities k12=k23 and k'12=k~, one obtains 

g2,(k23, )',2, )'2, )'2,, 6,z, 62, 62,, t) = g12(k;,, )'12,612, t)p2(k2,)l] 
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Fig. 10. Representation of the unfolding procedure for a time- 
of-flight spectrum I(T) with 8~sec channel width. In case 1 
the effective resolution function for phonon scattering has 
been determined using the Gaussian approximation. In case 
2 the calculation of Ra(T) has been based on a sampling 
procedure. The resulting phonon lines a(T) reveal the fol- 
lowing properties (the values in brackets denote the cor- 
responding phonon frequencies and widths). Case 1: T l=  
channel number 24"2 (12"90 THz); F~=9-7 channels (0.70 
THz). Case 2:T1 =channel number 22.0 (12-74 THz); Fa= 
8.3 channels (0.60 THz). 

41n2 41n2 41n2 41n2 62} ' 
x exp ¢2 72- -¢x~- 723- - r / T  6~-  

(B2) 

where g,2 is defined by equation (2-2a) and P2 denotes 
the sample reflectivity. By applying equations (A2), 
(A3), and (A4) to the elastic reflexion from the sample 
and integrating the vertical terms over 612 the wave- 
number distribution gz3 can be written in the form 

7~ 
gz3(k23,' )'23, 62,,t)=go(k23)p,(k2,)P2(k2,)' ' ' 4abln2 

k ; , ]  ]2 
x exp{-41n-----~-22 [) '23+2(1-  ( t g 0 , - t g 0 2 )  

0Co 2, k23 ] 

41n2 [)'2,+ (1_ k;s"l 
¢2 k23 ] (tg 01 - 2  tg 02) 

+2n (vt- -~)]2 41n2c~22 [?,2,_ 2 ( 1 -  k2'~k2 ' , tg 02] 2 

¢2 k2 ' ] tg - --22- ~- )'2 z, 

41n2 [' _ 1 ] 623- 41n2 6~3 / 
4r/~ sin 2 02 \1 4b2r/2 sin2 02 ] J 

(B3a) 
with 

V 1 1 1 
b= f12 + @/2 sin 2 0, + ~ + @/2 sin 2 02 • (B3b) 

The corresponding half-width is then given by 

6aT: m(L12 + L23 ) ( 1 1 ) (B4) 
h (k;,)mi. (k;3)max ' 

where (k2a)minand (k23)max result from equation (B3a) 
by considering the minimal and maximal values k2, of 
the 50 % probability distribution. 

The Doppler effect gives rise to the contribution 6bT 
which can be calculated from equations (2.6), (2-7), and 
(2.8) as 

2mY[2nvmsinO,(Lt2+L2,+c~-O-~l) 6bT-- hk~3 
_ 1 +cos 2 01 ] (B5) 

cos 01 " 

The time-of-fight spreads 6eT and 6aT due to the thick- 
ness of both the sample and the detector will be 

6cT= mWs I/2(1 - cos  gt) (B6) 
hk23 

6aT- mWa (B7) 
hk23 

according to equations (3.2) and (3.3). 
Using a set of resolution functions obtained at vari- 

ous experimental conditions the instrumental param- 
eters ~1, rh, ¢2, r/E, y, Ws and Wa can be determined on 
the basis of equation (B l) with the aid of a variational 
procedure. 
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Classifications of Magnetic Structures 

BY W. OPECHOWSKI AND TOMMY DREYFUS* 

Department o f  Physics, University o f  British Columbia, Vancouver, Canada 

(Received 17 August 1970) 

Two different classification schemes have been used for concise characterization of magnetic structures: 
one (called here CI') making use of magnetic groups, and another, more recent (called here C2), in 
which representations of space groups play an essential part. While the mathematical principles of C 1' 
have already been formulated in all their generality, this is not so in the case of C2 (although many 
magnetic structures have been discussed from the point of view of C2). In this paper the principles of 
C2 are formulated in a mathematically general way, a link between C 1' and C2 is established, and a few 
illustrative examples of magnetic structures are discussed. It turns out that C I' and C2 are equivalent 
in a precise mathematical sense, provided cyclic boundary conditions are imposed on the crystal; each 
magnetic structure has then its appropriate label in both classifications. If, however, one is not willing 
to impose such conditions, C2 may in some cases (as for example helical structures) meet with mathe- 
matical difficulties while CI '  never does. Claims made by Bertaut (Acta Cryst. (1968). A24, 217) that 
C2 is 'more general' than CI '  are thus unjustified. 

1. Introduction 

The phrase magnetic structure has many connotations 
in solid state physics. When discussing the problem of 
classification of magnetic structures we will take this 
phrase to mean nothing else than an axial vector func- 
tion that changes sign under time inversion and is de- 
fined on a set of points ( 'atoms') which form an ideal 
crystal, or any other atom arrangement. To stress that 
only this particular meaning is to be attached to the 
term magnetic structure, we shall most of the time use 
instead of it the term spin arrangement, and shall call, 
as is customary, the vectors spin vectors. 

An assignment of a label to each spin arrangement 
is called here a classification of all spin arrangements 
if 
(a) the label characterizes the spin arrangement com- 

pletely; that is, the label allows one, from the infor- 
mation contained in it, to construct the whole 
spin arrangement; 

(b) one obtains a list of all spin arrangements by letting 

* Present address: Institut de physique th6orique, Univer- 
sit6, Gen6ve, Switzerland, 

the symbols occurring in the label vary over a speci- 
fied class of symbols. 

The problem of classification of all spin arrange- 
ments is thus a special case of the general mathematical 
problem of classification of all (scalar or vector or ten- 
sor etc.) functions defined on a discrete set of points. 

If one applies an element of the space group F of a 
crystal to a scalar or vector function defined on it, then 
the function will either remain unchanged or be trans- 
formed into another function defined on the came crys- 
tal. This trivial remark makes it clear that there are 
two obvious ways of classifying all such functions: (1) 
by assigning to each function the subgroup H of F con- 
sisting of all those elements of F which leave the func- 
tion unchanged (we shall call this classification C 1); (2) 
by assigning to each function all those distinct func- 
tions which arise from it by applying the elements of  
I=; this is equivalent to assigning a permutation repre- 
sentation of F according to which those distinct func- 
tions transform, or, as it will turn out, an appropriate 
component of such representation (we shall call this 
classification C2). 

If  a function changes sign under time inversion, as 
spin arrangements do, classification C1 can be use- 


